Книга еврейской мудрости

...Лучше иметь еврейское государство, ненавидимое всем миром, чем второй Освенцим, за который мир вновь полюбил бы нас на короткий срок.

рав Меир Каhане





Давно Забытые Новости

Последние изменения

Новые пользователи


Нашли ошибку в тексте? Пожалуйста, выделите ее и нажмите CTRL-ENTER

Система Orphus

Кон-Фоссен, Стефан Эммануилович - Биография

Стефан Эммануилович Кон-Фоссен (28 мая 1902, Бреслау, Германская империя — 25 июня 1936 Москва, СССР) — немецкий и советский геометр.

Содержание

Биография

Родился в 28 мая 1902 года в немецком городе Бреслау (сейчас Вроцлав в Польше).

В 1924 году защитил кандидатскую диссертацию в университете Бреслау. В 1930 год стал профессором Кёльнского университета.

Потерял работу 1933 году как еврей в результате нацистских преследований. Сначала переехал в Швейцарию, в 1934 году работал учителем в Цюрихе. В этом же году эмигрировал в СССР, где рабо­тал в качестве ученого специалиста Математического инсти­тута Академии наук СССР и профессора Ленинградского университета.

Умер в 1936 году в Москве от пневмонии.

Научная деятельность

Исследования Кон-Фоссена относятся к дифференциальной геометрии в целом.

В работах Кон-Фоссена есть два основных направления: первые годы своей научной работы (1926—1929 гг.) он занимался вопросами изгибания поверхностей, затем, после некоторого перерыва в работе, он обращается к вопросам внутренней геометрии поверхностей, а именно, к исследованию полной кривизны и геодезических на открытых поверхностях.

Начало первому направлению исследований было положено теоремой Коши о жесткости выпуклого много­гранника. Работа по этой теме была продолжена Гильбертом, Бляшке, Либманом и Вейлем. В 1927-ом году Кон-Фоссен доказал, во-первых, что два изометричных овалоида конгруэнтны, и, во-вторых, что всякий овалоид становится нежёстким, если из него вырезать любой кусок. (Впрочем, последний результат был получен Зюсом ещё в 1924 г.)

Кон-Фоссен впервые показал, что существуют нежёсткие замкнутые поверхности (помимо тривиальных: поверхность с плоским куском всегда нежёсткая, так как этот последний — нежёсткий даже при зажатых краях).

Последние работы Кон-Фоссена посвящены геометрии в целом неограниченных незамкнутых поверхностей. Здесь он открыл связи между интегральной кривизной таких поверхностей и существованием на них «прямых», т. е. неограниченных линий, каждый кусок которых есть кратчайшая линия между его концами.

Вместе с Давидом Гильбертом в 1932 году выпустил известную книгу «Наглядная геометрия» («Anschauliche Geometrie»). Незадолго до смерти принял участие в выпуске русского перевода этой книги.

Книги

Научные статьи

  • Singularitäten konvexer Flächen, Math. Ann., 97 (1927), стр. 377—386.
  • Zwei Sätze über die Starrheit der Eiflachen, Göttinger Nachrichten (1927), стр. 125—134.
  • Die parabolische Kurve. Beitrag zur Geometrie der Berührungatransformationen. der partiellen Differentialgleichungen zweiter Ordnung und der Flächenverbiegung, Math. Ann., 99 (1928), стр. 273—308.
  • Unstarre geschlossene Flächen, Math. Ann., 102 (1929), стр. 10—29.
  • Sur la courbure totale des surfaces ouvertes, Comptes Rendus. Acad. Bei. Pari/1. 197 (1933), стр. 1165—1167.
  • Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Mathematioa, 2 (1935), стр. 69—133.
  • О существовании кратчайших путей. Доклады АН СССР. т. III (VIII): 8 (1935), стр. 339—342.
  • Полные римановы пространства положительной кривизны, Доклады АН СССР. т. III (VIII): 9 (1935), стр. 387—389.
  • Existenz kürzester Wege, Compositio Maihematica, 3 (1936), стр. 441—452.
  • Totalkrümmung und geodätische Linien auf einfachzusammenhängenden offenen vollständigen Flächenstückon, Матем. сб. (нов. серия), т. I (43): 2 (1936), стр. 139—164.
  • Der approximative Sinussalz für kleine Dreiecke auf krummen Flächen, Compositio Mathematica, 8 (1936), стр. 52—54.
  • Diekollineationen des n-dimensionalen Raumes., Math. Ann,. 115(1937), стр. 80—86.

Примечания

<references/>

Ссылки







В статье упоминаются люди: Кон-Фоссен, Стефан Эммануилович

Эта информация опубликована в соответствии с GNU Free Documentation License (лицензия свободной документации GNU).
Вы должны зайти на сайт под своим именем для того, чтобы иметь возможность редактировать эту статью

Обсуждения

Нет комментариев

Пожалуйста войдите / зарегистрируйтесь, чтобы оставить комментарий