Книга еврейской мудрости

Человек, который считает, что сможет жить без других, ошибается. Человек, который считает, что другие не смогут жить без него, ошибается вдвойне.

Хасидская мудрость

Кон-Фоссен, Стефан Эммануилович - Биография

Стефан Эммануилович Кон-Фоссен (28 мая 1902, Бреслау, Германская империя — 25 июня 1936 Москва, СССР) — немецкий и советский геометр.

Содержание

Биография

Родился в 28 мая 1902 года в немецком городе Бреслау (сейчас Вроцлав в Польше).

В 1924 году защитил кандидатскую диссертацию в университете Бреслау. В 1930 год стал профессором Кёльнского университета.

Потерял работу 1933 году как еврей в результате нацистских преследований. Сначала переехал в Швейцарию, в 1934 году работал учителем в Цюрихе. В этом же году эмигрировал в СССР, где рабо­тал в качестве ученого специалиста Математического инсти­тута Академии наук СССР и профессора Ленинградского университета.

Умер в 1936 году в Москве от пневмонии.

Научная деятельность

Исследования Кон-Фоссена относятся к дифференциальной геометрии в целом.

В работах Кон-Фоссена есть два основных направления: первые годы своей научной работы (1926—1929 гг.) он занимался вопросами изгибания поверхностей, затем, после некоторого перерыва в работе, он обращается к вопросам внутренней геометрии поверхностей, а именно, к исследованию полной кривизны и геодезических на открытых поверхностях.

Начало первому направлению исследований было положено теоремой Коши о жесткости выпуклого много­гранника. Работа по этой теме была продолжена Гильбертом, Бляшке, Либманом и Вейлем. В 1927-ом году Кон-Фоссен доказал, во-первых, что два изометричных овалоида конгруэнтны, и, во-вторых, что всякий овалоид становится нежёстким, если из него вырезать любой кусок. (Впрочем, последний результат был получен Зюсом ещё в 1924 г.)

Кон-Фоссен впервые показал, что существуют нежёсткие замкнутые поверхности (помимо тривиальных: поверхность с плоским куском всегда нежёсткая, так как этот последний — нежёсткий даже при зажатых краях).

Последние работы Кон-Фоссена посвящены геометрии в целом неограниченных незамкнутых поверхностей. Здесь он открыл связи между интегральной кривизной таких поверхностей и существованием на них «прямых», т. е. неограниченных линий, каждый кусок которых есть кратчайшая линия между его концами.

Вместе с Давидом Гильбертом в 1932 году выпустил известную книгу «Наглядная геометрия» («Anschauliche Geometrie»). Незадолго до смерти принял участие в выпуске русского перевода этой книги.

Книги

Научные статьи

  • Singularitäten konvexer Flächen, Math. Ann., 97 (1927), стр. 377—386.
  • Zwei Sätze über die Starrheit der Eiflachen, Göttinger Nachrichten (1927), стр. 125—134.
  • Die parabolische Kurve. Beitrag zur Geometrie der Berührungatransformationen. der partiellen Differentialgleichungen zweiter Ordnung und der Flächenverbiegung, Math. Ann., 99 (1928), стр. 273—308.
  • Unstarre geschlossene Flächen, Math. Ann., 102 (1929), стр. 10—29.
  • Sur la courbure totale des surfaces ouvertes, Comptes Rendus. Acad. Bei. Pari/1. 197 (1933), стр. 1165—1167.
  • Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Mathematioa, 2 (1935), стр. 69—133.
  • О существовании кратчайших путей. Доклады АН СССР. т. III (VIII): 8 (1935), стр. 339—342.
  • Полные римановы пространства положительной кривизны, Доклады АН СССР. т. III (VIII): 9 (1935), стр. 387—389.
  • Existenz kürzester Wege, Compositio Maihematica, 3 (1936), стр. 441—452.
  • Totalkrümmung und geodätische Linien auf einfachzusammenhängenden offenen vollständigen Flächenstückon, Матем. сб. (нов. серия), т. I (43): 2 (1936), стр. 139—164.
  • Der approximative Sinussalz für kleine Dreiecke auf krummen Flächen, Compositio Mathematica, 8 (1936), стр. 52—54.
  • Diekollineationen des n-dimensionalen Raumes., Math. Ann,. 115(1937), стр. 80—86.

Примечания

<references/>

Ссылки







В статье упоминаются люди: Кон-Фоссен, Стефан Эммануилович

Эта информация опубликована в соответствии с GNU Free Documentation License (лицензия свободной документации GNU).
Вы должны зайти на сайт под своим именем для того, чтобы иметь возможность редактировать эту статью

Обсуждения

Пожалуйста войдите / зарегистрируйтесь, чтобы оставить комментарий

Добро пожаловать в JewAge!
Узнайте о происхождении своей семьи